
Comet C/2013 V5 (Oukaimeden): Evidence for 

Compositional Heterogeneity as Revealed 

through Infrared Spectroscopy

M. A. DiSanti (Code 693 and The Goddard Center for Astrobiology) 

M. DiSanti, Carbon in the Solar System, 2018 April 26 1

C/2013 V5 (Oukaimeden), 2014 Sep 14 

(photo credit: D. Peach)



Collaborators/Team Members:
B. P. Bonev (American U.), 
N. Dello Russo, R. J. Vervack (APL)
E. L. Gibb (U. Missouri-St. Louis),
N. X. Roth (UM-SL, grad student & PhD candidate),
A. J. McKay (USRA-NPP/GSFC), 
H. Kawakita (Kyoto-Sangyo U.),
A. L. Cochran (U. Texas – McDonald Obs.)

M. DiSanti, Carbon in the Solar System, 2018 April 26 2



Outline
Ø Importance of and IR platforms for studies of cometary parent 

volatile composition

Ø Our study of C/2015 V5 (Oukaimaden); evidence for non-

homogeneous composition in the nucleus

Ø Current/future capabilities: iSHELL at the IRTF
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Different types of fossils

Just as dinosaur fossils tell us
about Earth at earlier times …

… comets tell us about
our Solar System at
earlier times

“Comets as Fossils”
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Ø Refractory Organics (carbonaceous dust)
• Seen as continuum thermal emission, particularly at l ~

3-5 µm for comets near heliocentric distance Rh = 1 AU

Ø Volatile Organics
• Although H2O is the dominant ice, comets also harbor a 

myriad of carbon-bearing ices, including PAHs
• Upon sublimation cometary ices release parent volatiles 

(molecules) into the coma
• The “simplest” (spectroscopically, structurally) of these 

are quantified using high resolution IR spectroscopy
Ø The fraction of carbon in each reservoir (refractory, volatile) 

depends on a comet’s gas-to-dust ratio, and carbon versus 
silicon content in grains

Carbon in comets
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Platforms (observatories + echelle 
spectrometers) available for near-IR (1-5 µm) 

spectroscopy at l/Dl > 1 x 104
(used for our study of C/2013 V5 Oukaimeden)

Ø W. M. Keck (telescope 2): NIRSPEC
• 10-m telescope, Maunakea Observatories (MKO), Hawai’i, USA
• 1024x1024-pixels, 24 arc-sec slit length, multiple orders (cross-

dispersed), l/Dl ~ 2.5x104, piece-wise spectral coverage per setting
• Scheduled upgrade begins Aug 1, back on Keck2 by Dec 9 (for 46P)

Ø NASA Infrared Telescope Facility (IRTF): CSHELL
• 3-m telescope, MKO 
• 256x256-pixels, 30 arc-sec slit length, single echelle order, 
l/Dl ~ 2.5x104, limited spectral coverage per setting

• Daytime observing at IRTF – unique capability among IR platforms
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Analysis of cometary spectra allows building a 
taxonomy based on molecular abundances

Infrared (and Sub-mm) Telescopes play a major role

Photo: R. Novak

NASA-IRTFKeck 2

Summit of Maunakea, Hawai’i, USA (altitude 4.2 km)
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Compositional studies of cometary ices 
require high resolution spectroscopy

(l/Dl > 1 x 104)
The Near-IR (l~1-5µm) affords key opportunities:
• Measurements of 7 - 10 “primary” (aka parent) volatiles (H2O, C2H2, CH4, 

C2H6, CO, H2CO, CH3OH, HCN, NH3, OCS)
• Use of up-to-date HITRAN database to model telluric transmittances

• Direct detection of H2O through non-resonant fluorescence

• OH Prompt emission (OH*): Proxy for H2O abundance and spatial 

distribution

• Unique sounding of symmetric hydrocarbons (e.g., CH4, C2H2, C2H6)

• Efficient measure of rotational temperatures (Trot) 

• Spin temperatures (Tspin) for species w/ symmetric H-atoms (H2O, CH4, etc)

• Isotopic abundance ratios (HDO/H2O, CH3D/CH4, etc.)

• Small (sub-arcsecond) pixels favor detection of primary volatiles (native 

ices; i.e., released directly from the nucleus)
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C/2004 Q2 (Machholz), 

UT 2005 Jan 19

(NIRSPEC/Keck, six orders)

H2CO in C/2002 T7 (LINEAR), UT 2002 May 05
(CSHELL/IRTF, single order legacy instr.; 

“traditional” beam positions)

Spatial-spectral frames:  A - B differences

CSHELL GRASP

OH*
| 

n1 Q-branch
|

15 arc-sec W nod
(assumes E-W slit)
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R = 2,200

R = 24,000

High Spectral Resolution is Required
l/Dl ≥ 20,000, versus ~ 2,000

|  CSHELL |
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Our Compositional Study of Parent 
Volatiles/Native Ices in C/2013 V5 

(Oukaimeden)
Ø Discovered 2013 Nov 12 (Oukaimeden Obs/Marrakech,Morocco); 

perihelion 2014 Sep 28; a0 = 55000 AU so Oukaimeden is a 
dynamically new or at least extremely long-period comet from 
the Oort cloud 

Ø NIRSPEC on UT 2014 Sept 5 – 6 
• Eight trace parent volatiles (C2H2, CH4, C2H6, CO, H2CO, CH3OH, HCN, NH3) 

were measured simultaneously with H2O, using three instrument 
settings (KL1, KL2, MWA)

• This simultaneity overcomes sources of systematic errors (e.g., slit loss 
correction, potential temporal variability in gas production & outflow)

• Observations were limited to the last ~ 75 minutes of the night

Ø CSHELL on UT 2014 Sept 11 – 13
• All observations were after sunrise so during daytime
• Detections limited to two settings, simultaneously measuring CO & H2O 

on all dates M. DiSanti, Carbon in the Solar System, 
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Sample L-band Spectra of C/2015 V5 (NIRSPEC)
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l ≅ 2.94-2.98 µm

l ≅ 3.00-3.04 µm

l ≅ 3.26-3.31 µm

l ≅ 3.57-3.62 µm



M-band Spectra 
(CO & H2O) 

NIRSPEC 

CSHELL
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H2O Production in C/2015 V5
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Q(H2O) a Rh
-1.1+1.0 (relatively flat); 

Slope and Q are consistent with SOHO/SWAN, w/ 
much larger FoV, between Rh = 1.1 and 0.625 AU 
(Combi+ 2018 Icar 300:33)

=> Relatively localized release of H2O (from nucleus or 
innermost coma)



C/2013 V5: Evidence for Compositional heterogeneity 
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Sep 05 Sep 06
KL1 order 22: l≅3.47 – 3.52 µm

Note: Much stronger C2H6 and moderately stronger CH3OH on Sep 06

Sep 05 Sep 06
KL1 order 23: l≅3.32 – 3.37 µm



Compositional heterogeneity (cont’d) 

M. DiSanti, Carbon in the Solar System, 
2018 April 26 16

median abundance among comets



Compositional heterogeneity (cont’d) 
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median abundance among comets
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Additional “Snapshots” of Abundances in C/2015 V5
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Spatial Profiles of H2O, organics, and dust
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Summary of Results for C/2013 V5 (Oukaimeden)
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Ø H2O production was fairly flat between ~ 0.8 and 0.7 AU pre-perihelion.  
Agreement with SOHO/SWAN all-sky observations of the Ly-a coma.
• Q(H2O) was larger by 42±15 % on Sep 06 compared with Sep 05

Ø Overall, parent volatiles were depleted compared with their median values 
among comets.  Exception: NH3 was “normal”

Ø C2H6 was severely depleted on Sep 05 & tracked H2O spatial profile => 
association w/ “polar” (H-bonded) ice?; less depleted on Sep 06, spatially 
distinct from H2O => C2H6 was sequestered in a distinct (a-polar) phase of ice(?)
• Q(CH3OH) increased by 1.9±0.2    (by 51±35% wrt H2O)
• Q(C2H6) increased by 2.7±0.3 (!!)  (by 87±23% wrt H2O)

Ø Implications for interstellar [H-atom addition to C2H2 (à C2H6), CO (à CH3OH) 
on grains] versus nebular (gas-phase) chemistry
• Compositional studies have since become more addressable…our study of 

C/2013 V5 would definitively have been more complete if we’d had….



Current/Future IR Observational Prospects
Ø NIRSPEC upgrade (pending)

• Install a modern 2K x 2K H2RG detector array, retain cross-dispersed capability

Ø New spectrograph at the IRTF (iSHELL) (Rayner et al. 2016 SPIE 9908:1) / CSHELL 
replacement beginning October 2016

• 2K x 2K array detector, cross-dispersed; has IR slit-viewer (fr. SpeX)

• Daytime observing capability w/ l/Dl up to ~ 70,000 (~ 40,000 matches 0.7” seeing)

• Serial coverage of comets to small heliocentric distances => addresses observational 

biasing associated with measurements at a single Rh

• Six comets measured in 2017A semester, one (so far) in 2018A, five more comets 

targeted for 2018B, ending with 46P/Wirtanen (dedicated campaign time at IRTF)

M. DiSanti, Carbon in the Solar System, 
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iSHELL guider (IR slit viewer)

iSHELL spectrometer
iSHELL: ala SpeX, but w/ 

much higher l/Dl!

21
iSHELL at IfA/Manoa, Aug. 2015



Bridging toward the future: The need for 
serial measurements of comets

(aka over a range of heliocentric distances, Rh)
Most compositional studies are “snapshots” (single Rh, or over a very limited range in Rh)
e.g., H2CO offers a case in point…this introduces a bias when interpreting compositions

There are relatively few measurements at multiple Rh. Comet ISON in particular provided a 
unique opportunity for serial measurements!  However, do observed changes in abundances of some 
species (especially H2CO, NH3, HCN) suggest compositional heterogeneity, or is release from increasingly 
heated (ice- or refractory-dominated) grains important?  iSHELL will enable serial studies 
of comets to small Rh! M. DiSanti, Carbon in the Solar System, 

2018 April 26 22
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